

Grid voltage control deploy to enhance Solar PV assets

A managed service model for commercial and industrial customers

22 July 2024

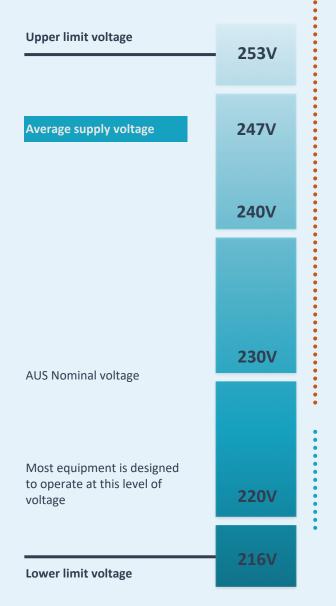
For distribution to customers

Opportunity reduce power bills and CO2 emissions

Grid average of 247 V vs 220 V

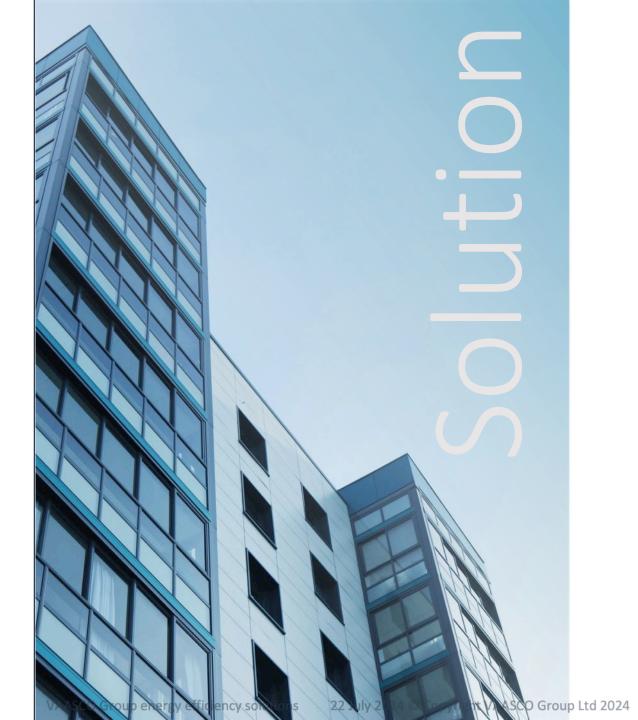
Supply voltage is materially higher (247 V on average) than required (> 220 V).

This results in:


higher electricity usage, and bills

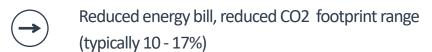
higher CO2 emissions

heightened risk of equipment failure


Increased prevalence of supply voltages exceeding the maximum

Curtailment of PV generation (Inverter "backoff") c. 251V

Your business could be paying for this level of voltage


Voltage Power Optimisation (VPO) will reduce your incoming voltage leading to lower electricity usage and reduced bills

VOLTAGE OPTIMISATION reduces the energy usage caused by elevated grid voltages, leading to....

Cash flow uplift range (net bill reduction shared with VAASCO)

NIL capital investment requirement (due to the Managed Service Model)

Off Balance Sheet for the energy user

VOLTAGE OPTIMISATION will enhance the generation availability and output of site PV Solar installations

IOT cloud based monitoring for asset management and performance reporting

Monthly billing by direct debit

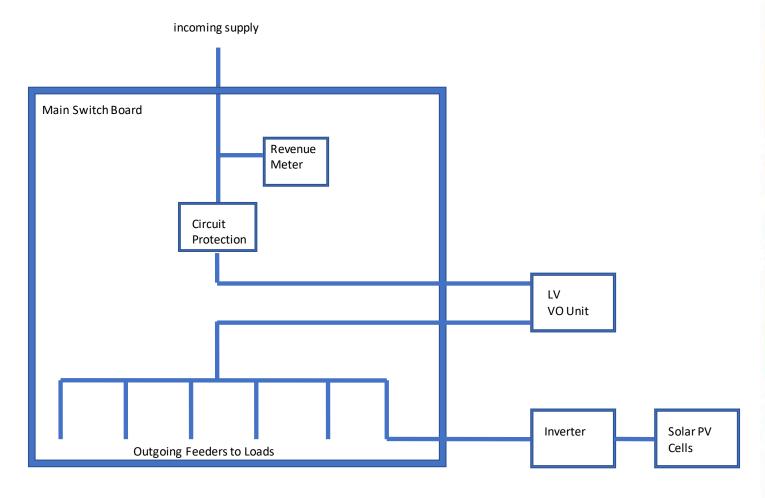
VAAS complements renewable energy solutions

Co-deployment of VAAS with distributed Solar PV generation

Solar PV is an energy source that may be deployed at a customer facility. It reduces the energy [kWh] imported from the grid to the site load, during daylight hours. It may even export to the grid if generation exceeds site loads. Solar PV installation will typically be limited by available roof area, limiting its generation capacity.

The increasing installed base of distributed Solar PV increases the variability of grid voltages, and the following effects may occur at a customer site:

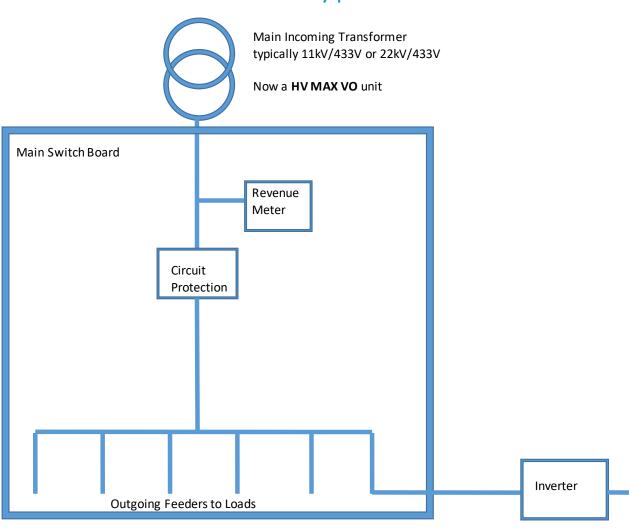
- Reduced generation availability, dur to inverter back-off and zero generation when near statutory maximum voltage
- Increased load energy consumption, causing increased grid imports


Installing VAAS reduces energy consumed within the site, and enhances Solar PV operation:

- Site voltage is brought to an optimum level (at or about 220V).
- Energy consumption [kWh] of the site load will be reduced at all times, further reducing energy imported from the grid.
- Equipment on the site will not be exposed to high voltages, thus improving the lifespan of the equipment
- Solar PV inverters will not trip on high voltages and perform to the inverter design and specifications.
- Solar PV output will be improved as inverters will operate at maximum output and run cooler due to over voltage removal.

Installing VO improves the Solar PV payback years and ROI.

LV VO configuration LV VO and Solar PV typical connections



LV VO configuration

HV VO and Solar PV typical connections

VAASCO Group

Solar PV

Cells

Case study: VO & Solar PV

SME C&I customer scenario

Customer has onsite Solar PV generation

Before VO

- Solar providing 50% of site energy [kWh]
- → Grid supply providing 50% of site energy [kWh]

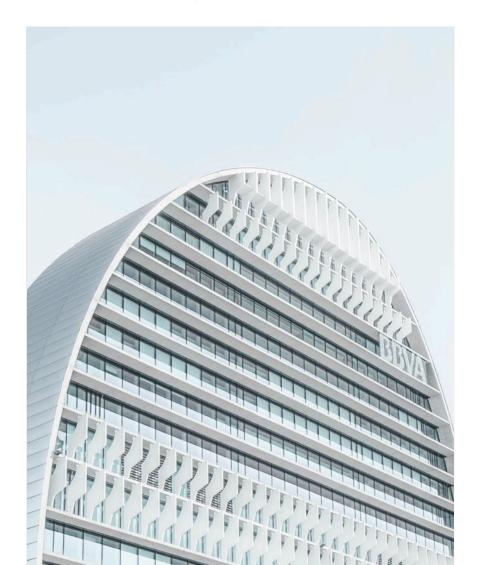
After VO installation

- ➤ VO saving is 12.5% of total site load energy consumption [kWh]
- Outcome Grid energy imports reduced by 25.0% [kWh]

Conclusion

- Utility energy supply bill reduced by 25.0%
- Carbon footprint reduced by 25.0%
 A significant step towards **NET ZERO ENERGY**

VAASCO splits the saving with the customer *


* Depending upon factors such as asset utilization, grid voltage profile, equipment inventory, the nominal 50/50 may be adjusted by VAASCO to another split to ensure the financial viability of the project for VAASCO and other stakeholders.

Next steps data requests

For VO to be installed with Solar PV, the following is required:

- Site survey to understand the type of load on the site.
- Voltage logging to get the voltage profile over a minimum of 7 days.
- Energy consumption [kWh] data with tariff details.
- Site specific installation assessment.

Please discuss with our representative for the next steps for VO proposal and installation.

VAASCO Group's portfolio approach enhances Solar PV asset portfolios

Purpose Simple value screen to assess customer value, for use with

portfolios of Solar PV installations

Asset Manager List portfolio (rank by energy usage)

For each Solar PV asset, list the following basic parameters

Grid import Total energy import (MWh pa, \$ pa)

Solar PV Installed capacity (kW)


Solar Gen Total energy generated (MWh pa, \$ pa)

[Load usage Total energy usage (MWh pa) = Grid import + Solar Gen]

For each end-user customer, list the following basic parameters

Scale Number of sites in sub-portfolio

Intensity Average Energy import per site (MWh pa, \$ pa / # sites)

VAASCO Group

HQ VAASCO Group Ltd

Suite 3, Level 10, 45 William Street Melbourne, Victoria 3000 Australia

Mail PO Box 7 Flinders Lane, Victoria 8009 Australia

Tel +61 412 449960

Email sales@vaasco.ne

directors@vaasco.net

SCAN ME